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Abstract

This research investigates the generation, display, and interpretation of three-dimensional
(3-D) Synthetic Aperture Radar images. Three-dimensional assumes that the data collected
consists of one temporal dimension and two orthogonal angular dimensions. From this data, a
three dimensional reflectivity map, or 3-D image, of a target can be constructed. This reflec-
tivity map can then be compared to the known structure of a target to gain more insight into
the scattering mechanisms of the target. Until now research in this area has been limited to
two-dimensional imaging. With the added third dimension, a more detailed target scattering
map is possible.

First, a detailed review of radar imaging theory is conducted. This review starts
with basic one-dimensional down-range profiles and Synthetic Aperture Radar theory. Two-
dimensional imaging theory is then presented and developed through two-dimensional Filtered
Back-Projection. This two-dimensional theory discussion is used as a stepping stone for the
derivation of the three-dimensional Filtered Back-Projection algorithm. Finally, this algorithm
is converted to a discretized algorithm for use on a computer.

This thesis effort applies this three-dimensional algorithm on actual radar data measured

L

5 scale model of a C-29 aircraft. In the process of implementing this algorithm a few

on an
problems were encountered. Mainly, due to the vast quantity of data to be processed, the
amount of memory available in terms of hard drive space as well as RAM became a limitation.
Problems arose from the need to upsample the projection data in order to get sufficient image

quality. Working within these memory constraints, three-dimensional images were produced.

The results demonstrate the ability to produce three-dimensional images given three-
dimensional radar data. Two-dimensional slices of the three-dimensional image as well as

three-dimensional isosurfaces are compared to the physical properties of the target.




Three Dimensional Inverse Synthetic Aperture Radar Imaging

1. Introduction
1.1 Problem

The United States Air Force is actively trying to develop technology to produce high
resolution spatial maps from radar data taken on various targets. These maps can then be
analyzed for target identification purposes. A couple of recent incidents reinforce the USAF’s
interest in this technology. Several years ago, the United States Navy accidently shot down
an Iranian 747, mistaking it for a hostile fighter aircraft. More recently, the USAF shot
down two United States Army Blackhawk helicopters mistaking them for much larger Iraqi
Hind helicopters. The obvious structural differences between these mistaken identities and
the actual targets could have been discerned had this radar technology been operationally

available.

To this point, SAR imaging research has been limited to two-dimensions. With the
added third-dimension, more information can be obtained about a target, ultimately allowing

a more accurate target identification.

This research investigates the generation, display, and interpretation of three-dimension
(3-D) Synthetic Aperture Radar images. Three-dimension assumes that the data collected
consists of one temporal dimension and two orthogonal angular dimensions. From this data,

a three dimensional reflectivity map, or 3-D image, of a target can be constructed.

Advanced radar ranges can collect and process data of this type efficiently. This research
develops an efficient imaging algorithm to process this data. Also, since the resulting image
is a function of three dimensions, methods to properly display the images, or slices of the

images, will also be developed.




1.2 Radar Imaging Background

A thorough knowledge of the current two-dimensional (2-D) research is required in
order to the develop an extension to 3-D. This summary provides an overview of past research

done in this area.

1.2.1 Parametric Reconstruction Methods.

In many applications of computerized imaging, such as in electron microscopy, astron-
omy, geophysical exploration, non-destructive evaluation, and others, it is not possible to
collect a complete set of angular-projections. Standard Fourier based reconstruction methods
perform poorly in the case of limited projection data due to poor resolution. Parametric or
iterative algorithms, on the other hand, are capable of producing high-quality images with
limited data sets since they automatically take into account the missing data, as well as use

a-priori information about the target (3).

The maximum likelihood method (MLM) of spectral estimation is one parametric
method applied to the tomographic problem. This method has been found to provide high
resolution, but does not exist for all data sets (11). Two-dimensional auto-regressive (AR)
modeling algorithms also exist but have proved to be computationally expensive (6). The
Prony method coupled with total least squares (TLS) has been used successfully to estimate

frequencies from noisy data in one-dimension. This method was also extended to 2-D (11).

Delaney and Bressler (3) develop a series-expansion approach that is used in a fast
and iterative tomographic reconstruction algorithm. This algorithm is applicable for parallel-
ray projections that have been collected at a finite number of view angles. A conjugate
gradient algorithm is used to minimize a regularized least-squares criterion. The main step in
each iteration is equivalent to a 2-D discrete convolution, which can be cheaply and exactly

implemented via the Fast Fourier Transform (FFT) (3).

These iterative or parametric techniques have been shown to have superior resolution

capabilities but have also shown to be computationally expensive (2). This computational




cost is a major drawback since just one iteration typically requires more computation than an

entire typical Fourier based method (3).

1.2.2 Fourier Reconstruction Methods.

In Fourier based methods, the radar returns from a target can be considered as a sample
of the 2-D Fourier spectrum of the target’s reflectivity. The imaging problem becomes one of
reconstructing the spatial reflectivity of the target given these discrete samples of its Fourier

spectrum (1).

One problem that arises in the use of Fourier based methods is that radar data is not
usually collected in a uniform rectangular grid in the spectral domain since the rotation of the
radar around the target introduces polar aspects. This property causes distortion if the standard
2-D Inverse Fast Fourier Transform (IFFT) is used to approximate the Fourier Transform,
especially when data is obtained over large look angles. The 2-D IFFT is considered to yield
the poorest results in terms of image quality, but is extremely fast computationally (1). In order
to eliminate the distortion a focusing procedure must be used (8). A few focusing methods

are now described.

1.2.2.1 Direct Focused Imaging.

Focused imaging utilizes a process which applies exact phase corrections to the sampled
reflectivity data. Two direct focused methods are studied in (1); the first is simply an inverse
Fourier transform from polar coordinates to rectangular coordinates. The second, originally
derived by Mensa (8), is a similar method, but the phase correcting data points are not properly
weighted in the final sum (1). This method still gives very accurate results, especially as the
ratio of center frequency to bandwidth increases. The fact that an FFT algorithm cannot be
used causes these direct focusing methods to be computationally expensive but provides the

most accurate image possible.




Technique Time (seconds)
Focused (both types) 552
Unfocused 1.74

Focused via Interpolation | 2044

Filtered Back-projection | 217

Table 1. Computational Speed of Imaging Techniques.

1.2.2.2 Focused Imaging via Interpolation.

In order to use the FFT to increase computational speed, the polar data is mapped onto
a rectangular grid. This mapping is done by up-sampling the data set and then picking the
closest data point to the required rectangular coordinates. This process obviously produces

some inaccuracies and has been shown to be very computationally expensive (1).

1.2.2.3 Filtered Back-Projection.

An estimated image can be constructed by summing, or superimposing, 1-D projections
from all available angles. This method unfortunately produces a blurred image. To correct
this problem, a deblurring filter must be applied to the data. It is preferred in some applications
to filter the projections prior to superimposing (8), but the filtering can be done on the spectral
data prior to transforming it. Since both the frequency and spatial domain data are discrete in
nature, the location of each individual image pixel may lie between available data points. This
brings up the requirement for interpolation to produce a more accurate image. The filtered
back-projection method has been shown to produce very accurate results while also being
reasonable computationally (1). Table 1, taken from (1), compares computational speed of

the foéusing methods described above.

1.3 Approach/Methodology

Lewitt clearly explains the development of two-dimensional direct focus and filtered
back-projection reconstruction algorithms in (7). In this research a three-dimensional recon-

struction algorithm is developed using the same type of mathematical development. Due




to its computational efficiency This algorithm is a three-dimensional extension of the two-
dimensional Filtered Back-Projection algorithm due to its computational efficiency . This
algorithm is then applied to compact range data taken on a % scale model of a C-29 aircraft,
measured by Wright Laboratory. A suitable method for displaying the reconstructed three-
dimensional data is then developed so that it can be visually compared to the actual physical

properties of the aircraft.

1.4  Summary of Chapters

Chapter 2 covers imaging theory from its fundamentals through a detailed development
of three-dimensional imaging. Finally a discretized algorithm is developed. The actual
application of the theory is discussed in Chapter 3. The target used is described as well as the
measured data sets. The methodology of producing the actual images found in this research is
also discussed. Three dimensional images as well as two-dimensional slices are included in
Chapter 4. These results are explained and compared to the actual target. Chapter 5 contains

conclusions drawn from the research and recommendations for future work.




II. Radar Imaging Theory
2.1 Introduction

In this chapter radar imaging is presented, starting with its basic principles through
two-dimensional Filtered Back-Projection. This two-dimensional mathematical basis is then
extended to a three-dimensional Filtered Back-Projection algorithm. Finally, this three-

dimensional algorithm is then discretized for use on a computer.

2.2 Two Dimensional Radar Imaging

Radar sensors respond to electro-magnetic waves which are scattered when the propa-
gation of incident waves is disturbed by the presence of an object (8). When an object such as
an aircraft is interrogated by a radar, certain features such as wing tips and engines produce
“hot spots” or scattering centers where most of the return energy is radiated from. A spatial
map of these scattering centers would reveal the physical properties of the object. This spatial

distribution of reflectivity corresponding to an object is known as a radar image (8).

In order to produce a good quality radar image, a high degree of both downrange and
crossrange or azimuthal resolution must be achieved. Figure 1 illustrates the definitions of
downrange and crossrange. Downrange location is determined by measuring the time delay
between time markers in the transmitted waveform and the received waveform. In pulse radar
systems, these time markers are the leading and trailing edges of the pulse. The round trip
delay, 7, for a target at range, R, where c is the propagation velocity is

2R
T= - 0]
So in order to distinguish between two points separated by a distance AR, you will

need a pulse width of less than T such that

2A
T= CR- (2)




A Downrange direction

| Target

Crossrange direction

Radar

Figure 1. Definition of Crossrange and Downrange.

This Equation can also be written as

cT
AR—7
or
C
AR = —
R 2B

€)

4

where, B = %, is the system bandwidth as defined in Figure 2. It can be seen that as the

system bandwidth increases, the resolution becomes finer, with the best resolution occurring

at infinite bandwidth or when the pulse is an impulse in time. So in order to get a high degree

of downrange resolution directly it would be necessary to transmit the entire bandwidth of

frequencies simultaneously such as in an Impulse Radar. This would prove to be extremely

difficult if not impossible. Luckily, the same results can be achieved synthetically by making

several narrowband measurements at discrete frequency increments, as shown in Figure 2.




Af

i |

. |

| | 000 |

|

| |

fo fo fo fo frequency
+ + +
A 2Af MAF

Figure 2. Sampled Frequency Spectrum, B = M A f, 1-D imaging.

Combining all these narrowband responses will provide the same range resolution as if the

entire frequency band was transmitted simultaneously (8).

Next, considering the crossrange dimension, the radar aperture must be increased in

size in order to improve azimuth resolution, Az, as shown in Equation 5,

A c

Am:§é=2fce

)
where © is the total radian angular aperture and f, = fy + %6 f as defined in Figure 2.

Physically increasing aperture size can lead to the need for extremely large antennas.
A more favorable method for our purposes is to develop a synthetic aperture by sequentially
transmitting and receiving at discrete points along a circular path to vary the viewing angle.
The received signals are coherently summed together to produce signals equivalent to those

that would be received by the physical aperture as shown in Figure 3 (8).




//\Target
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Storage

Figure 3. Synthetic Aperture Formation, spotlight mode SAR.

Synthetic Aperture Radar (SAR) utilizes both a synthetically expanded bandwidth as
well as the synthetic aperture process explained above. SAR is utilized in many ways but
this research is focused on spotlight Inverse Synthetic Aperture Radar (ISAR), in which the
radar is stationary with the antenna fixed on the target, while the viewing angle is changed by
rotating the target on a pedestal. It is also assumed that the radar sensor uniformly irradiates

the entire object as shown in Figure 4.

As stated earlier, a radar image can be looked at as the sum of the target’s scattering
centers which can be represented by the function f(z,y). Our goal is to determine the

locations of these scattering centers from our reflected radar signals by producing an image.

First we will define our geometry. As can be seen in Figure 4, the = and y axis are
fixed with respect to the target while the u and v axis are the cross range and down range
respectively with respect to the radar. For a fixed ©, the received signal for a certain down

range point v will be the integral of the reflectivity density over u, assuming that all reflection




Target
Rotates

Angle of Rotation

\/

Radar

Figure 4. ISAR geometry.

coefficients have equal phase components. Note that p(v; ©) in Equation 6 can be looked

upon as a projection of the reflectivity on the v axis at the look angle ©.

p(v;0) x /_0:0 fo(u,v)du 6)

where

fo(u,v) = f(z,y)

and
c0s® —sin®

sin® cos®

T
(7
Y

10




Figure 5. Radar projection.

The total received signal at a certain look angle and frequency, F'(f, ©), will be the line

integral of p(v; ©) along v with a correcting round trip phase factor. Thus

j4ry

F(£,0)= [~ pu;0) S dv= [ pls;0)e

_J4xv

¢ duv.

Substituting Equation 6 into Equation 8 we obtain

F(f,©) = /_: /_Z f@(u,v)e‘ﬁ:_vidudv

Since from Equation 7, v = zsin © + y cos ©, F(f, ©) can be expressed as

o0 o0 idr .
F(f, @) = /_oo /;oo f(x,y)e—l—'ic—ﬁ(xsm@-kycos@)dxdy

now defining
f. 2 fsin®

11

®

®

(10)

(11)




and

fy 2 fcos® (12)

F(f,©) can be rewritten as

Flfet) = [ [ fla,e €0=mdzay (13

where F,(fz, fy) is F(f, ©) expressed in rectangular coordinates. Equation 13 is recognized
as the two-dimensional Fourier transform. Due to the properties of the 2-D Fourier transform

we can write (4)

BT
fz,y) B B (£, £,) (14)

2-D
where 2} denotes a 2-D Fourier transform pair. The inverse 2-D Fourier transform of

Equation 13 is given by

flz,y) = / / (£, e U=t hv s, df, (15)

Thus, this equation establishes how a 2-D image is formed.

In ISAR, as we defined it in Figure 4, the radar data is not collected on a uniform
rectangular grid since the rotation of the target introduces polar aspects. This property would
result in a distorted or “unfocused” image if the standard Inverse Fourier Transform is used,
especially when data is collected over large look angles. In order to eliminate this distortion
we must convert the frequency domain into polar coordinates as shown in Figure 6. This

conversion is implemented by substituting Equations 11 and 12 into Equation 15 as well as

letting
dfzdf, = fdfd© (16)
we obtain
2 o0 4w .
flz,y) = / / F(f,©)e e @sin0+ycos®) £g¢ 70, a7
0 0 :
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Figure 6. Spatial frequency coordinates.

This can also be written as

x y _ /1r /oo F(f,@ ei_"%ﬁ(xsin@-kycos@)fdfd@_'_

/ / f, o + 71' J——i(z sin(@+7)+y cos(@+7r))fdfd®
and since for isotropic scatterers

F(f,©+m)=F(-f,0)
cos(© + 7) = — cos(©)
sin(© + 7) = —sin(O)

Equation 17 can be rewritten as

f(x,y) _ /Ovr [-0:0 F(f, @)eﬁg_'i(zsine-{-ycos@)lf|dfde_

13

(18)

(19)

(20)




Equation 20 produces a “focused” reconstruction of the target. However since the
standard rectangular coordinate system is not used the data is not compatible with a 2-D Fast
Fourier Transform (FFT) algorithm. This makes computing a “focused” image as shown in

Equation 20 much more computationally expensive than producing an “unfocused” image (1).

In order to increase computational speed it is also possible to construct a “focused”
image by summing, or superimposing one dimensional projections from all available angles
(8). This allows the use of the one dimensional Inverse Fourier Transform as follows. It
can be seen in Equation 6 that the total received signal at a certain look angle is also the
one-dimensional Fourier Transform of the projection p(v; ©) at that look angle. So, rewriting

Equation 20 as

fle) = [ | [ F(f @) e pigf| do e

it can be seen that the bracketed expression is a one dimensional Fourier transform of the total
received signal at a fixed look angle ©, multiplied by a filtering term | f|. Let’s now call this

the filtered projection p(v, ©),

#(0,0) = [ F(f,0)e"% fldf 22)

where v = 7 sin © + y cos ©. Substituting Equation 22 into Equation 21 we obtain

fa.y)= [ 5, €)de. 23)

Equation 23 is known as the Filtered Back-Projection method of imaging and can utilize a one
dimensional IFFT algorithm to compute the projections. This greatly increases computational

speed (1) while also produces a “focused” image.
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2.3 Three Dimensional Radar Imaging

Up to this point all discussion has been confined to two dimensions in an effort to
develop a mathematical basis for three dimensional imaging. In order to obtain elevation
resolution the target must also be rotated in a plane orthogonal to the azimuthal rotation as

shown in Figure 7.

/‘y

, elevation angle

z /

/
~_ y

1
1
1
1
1
!
\\
~ / !
~_ 17 !
1
> i
1
1
N 1
1
1
1
1

L
\

N
N
\|

azimuth angle

Figure 7. Three dimensional geometry.

Again the u, v, and w axes are fixed in relation to the radar while the z, y, and 2 axes
are fixed in relation to the target such that when © = ¢ = 0 the z axis is equivalent to the u
axis, the y axis is equivalent to the v axis, and the z axis is equivalent to the w axis. Figure 8

shows the radar configuration at the © = ¢ = 0 look angle.

Assuming that the Fourier transform relation holds in three dimensions

3-D
f@,0,2) L F(fo, £ £2) 4)

we can say
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W W

Radar

Figure 8. ISAR configuration at © = ¢ = 0.

f(z.y,2 / / / H(for for f)e &Gt hvt 10, df, df, (25)

Again as can be seen in Figure 7, the spherical coordinate system is more suitable than
rectangular coordinates for this geometry. Converting Equation 25 to spherical coordinates

by the following relations obtained from Figures 9 and 10

f. = fsin®cosd
fy = feosOcosg (26)
fo = fsing

dfdfydf. = f? cos pdfdOds

yields
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Figure 9. Spatial frequency coordinates in three dimensions.

27
.’13 Y, 2 / / / f,@ ¢ 1—£(msm®cos¢+ycos®cos¢+zsm¢f COS¢dfd@dd)
27

A similar process used to transform Equation 17 into 20 will transform Equation 27 into

CE Y, 2 / / / f, @ ¢ Lﬁ(zsm9cos¢+ycos@cos¢+zsm¢)f2 COS ¢dfd@d¢
(28)

Again, to obtain the Filtered Back-Projection Equation we rewrite Equation 28 as

f(a:,y, / / [/ f,@ ¢)e-7—c£(xsm®cos¢+ycos@cos¢+zsm¢)f2 COS¢df d@d¢
(29)
In this case the bracketed expression is also a one dimensional Fourier transform at a fixed

azimuth angle © and elevation angle ¢, multiplied by a filtering term, f2 cos ¢. This will be
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fx

Figure 10. df,df,df, = f? cos ¢df dOd¢.

called a filtered projection

7(0,0,8) = [ F(£,0,)e" 2 cos gaf (30)

where v = z sin © cos ¢+ y cos © cos ¢ + zsin ¢. Substituting Equation 30 into Equation 29

yields

fev) = [ [ 50,0 ¢)d0ds @y

Equation 31 is known as Filtered Back-Projection in three dimensions. It is this
equation that will be utilized in the formation of three dimensional images in this research.
But in practical applications is is impossible to obtain an infinite bandwidth. Therefore, a

band limited version of Equation 30 with frequencies ranging from f; through f is

18




fm 4y
(0,0, ) = / F(£,0, $)e"2L £2 cos ¢df. 32)

fo

It is also uncommon to have a complete set of projections from every angle so limiting
Equation 31 to azimuth angles from ©, through Oy and elevation angles from ¢, through ¢,

gives

¢r rOnN
fulz,7,2) = /¢ /e Bu(v,©, $)d0do. (33)

2.4 Discretized Three-Dimensional Algorithm

In order to implement this algorithm on a computer, a discrete version must be developed.
The continuous time version already derived can be sampled atdiscrete angles ©,, 0 < n < N
and ¢, 0 < m < M as well as using a sampled frequency spectrum as shown in Figure 2.
But inherently, when a signal is sampled in the frequency domain, aliasing occurs in the
time domain (9). In the downrange direction A f must be chosen such that the downrange

unambiguous range, R,

c

Ruz='2—&?

(34)

is at least as large as the downrange extent of the target. The angular steps, A© and A¢ must

also be chosen such that the unambiguous range in the crossrange, R,,, and vertical direction,

Ry,

C
R =37 86 (35)
R, = — 36
TV, (36)

are also greater than the size of the target in those directions.
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Using the trapezoidal rule (5) to discretize the filtered projection from Equation 32 we

obtain

L Janu
Ba(Vk, On, bm) = AFS. F(f1, O, b )e 2 £2 c08 . 37)
=0

Equation 37 can be recognized as an IFFT which can be easily implemented using available

software.

In a discretized version of Equation 33, values must be computed for each for each
Tq, Yr, 25 pixel such that 0 < ¢ < Q, 0 <r < R,and 0 < 5 < S. Since vy is also discrete

it is unlikely that the required equation

Vg = Tg5in Oy cos ¢r + Yr COs O, €OS Pry + 2p SiN Py (38)

will hold exactly, but rather the value will fall between two values such as vy and vi,;.
Therefore, in order to obtain a value for py a linear interpolation scheme must be used. The

method used in this research is as follows. Letting
Vg = T 8in Oy, cos ¢, + Y, cos Oy, cos P, + 2, sin Py (39)

then,

IU - l "Uk-+-1 - 'Ua'

('Ua, ny ¢m) pd(vk’ n ¢m) + ﬁd(vk-{-l) @m d’m) (40)

|Vk41 — v ] k41 — v

so each x4, yr, 25 pixel is computed as

5 N M
fbl(xmyrazs) = A6A¢Z Zﬁi(va’@m¢m)- 41

n=0 (=0

2.5 Conclusion

In this chapter radar imaging was presented from its basic principles through two-
dimensional Filtered Back-Projection. This two-dimensional mathematical basis was then ex-

tended to a three-dimensional Filtered Back-Projection algorithm. Then, the three-dimensional

20




algorithm was discretized for use on a computer. The algorithm derived in this chapter is ap-

plied to actual radar data in the next chapter.
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III. Application and Methodology
3.1 Introduction

In this chapter the target and radar data used to test the algorithm of Chapter 2 is
presented. Then, the methods used to generate results are explained as are the obstacles

encountered during the implementation of these methods.

3.2 The Target

In order to test the algorithm developed in Chapter 2, three-dimensional radar measure-
ments were made on an % scale model of a C-29 aircraft in a Wright Laboratory compact
range. This model was accurate in every detail when compared to the actual aircraft except
they put a reflective metallic film on the windscreen in order to block reflections from the

cockpit. Photographs and scale drawings of the model are shown in Figures 11 and 12.

3.3 The Data

Two series of radar measurements were taken on this target. One series was taken
with azimuth angles equaling —5° < © < 5° with step size A® = 0.04°, elevation
angles equaling 3° < ¢ < 7° with step size A¢ = 0.04°, and frequencies equaling
26 Ghz < f < 36 Ghz with step size Af = 10 Mhz. The transmit and receive polarizations
were both vertical for these measurements. This data set will be referred to as “ the nose data”.

Figure 13 illustrates this geometry.

The second series used the same elevation angles and frequencies as the first series, but
the azimuth angles equaled —19° < © < 29° with step size A® = 0.04°. The transmit
and receive polarizations were both horizontal for these measurements. This data set will be

referred to as “ the wing data”. Figure 14 illustrates this geometry.

Both data sets have the same unambiguous ranges as follows;
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3x108

R = 3536 = 2(BIx109)(0.04% &5 6.93 meters
Ry = 555 = i%xl_gge—) = 15 meters (42)
Ry, = 2fccA¢ = 2(31><1039>;(1(§).;4x = 6.93 meters
and theoretically provide resolutions of,
AR, = 353736 = 0% 1039);(1105.0x = = 0.0277 meters
AR, = 5 = 5&—6‘;(1—‘1’%9-5 = 0.015 meters (43)
AR, = 755 = mridass =5 = 0.0693 meters.

3.4 The Approach

The measured data or “raw data” is the Fp(fi, ©n, ¢) in Equation 37 and as expected
the data files are very large at 203.6 megabytes each. The first step in making an image is
computing the filtered projections, ps. This was accomplished using the Matlab program-
ming language developed by Math Works Inc., due to its ability to quickly perform matrix

computations.

Unfortunately, in spite of Equation 43, it was found to be necessary to up sample the
data when computing the IFFT in order to get sufficient resolution in the resulting image.
This is a result of accumulated error from summing the numerous projections. This caused
a large increase in data size which required a trade-off between image resolution and usable
disk space. The process of up sampling essentially provides additional interpolated projection
values between the originals, providing more accurate approximations when summing the
projections to compute a pixel value. It was determined, by trial and error, that a six times up
sample for the nose data and a seven times up sample for the wing data proved sufficient to
provide an accurate image. In order to demonstrate the importance of up sampling Figure 15
shows no up sampling, 6 times up sampling, and 20 times up sampling on one elevation
two-dimensional images using the nose data. It is seen that image quality decreases radically

as the up sampling factor drops with the case of no up sampling resulting in a useless image.
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However, the limited hard drive space available for this research resulted in the need for
additional data reduction. Since the target is only 5.2 meters in length and the unambiguous
range, [y, is 15 meters, a 50% data reduction is allowed by only requiring the use of every
other frequency sample. Similarly, since the target is 1.79 meters long in the z direction a
A¢ = 0.08° still allows an unambiguous range greater than the extent of the target in that

direction as shown in Equation 44.

3 x 108

~ 2(31 x 109)(0.08 x &)

R,, = 3.47 meters (44)

This fact permits an additional 50% data reduction by making it necessary to only use the data
from every other elevation angle. The 50 filtered projection files, one for each of the elevation
angles between ¢ = 3° and ¢ = 7° would take up approximately 605 megabytes of storage
space for the nose data and 705 megabytes for the wing data. These figures are still beyond
that which was available for the generation of this research, so only 37 of the elevation angles
between ¢ = 3° and ¢ = 5.88° were used. This resulted in an acceptable new z direction
resolution of,
3 x 108

AR, = = 0.0963 meters. (45)

2(31 x 109)(2.88 X &

Once the filtered projection files were produced, this data was transformed, using Fortran
77 code, to one large three-dimensional array according to f,©, and ¢ and restored as an
unformatted binary 223.3 megabyte file for the nose data and a 260.6 megabyte file for the wing
data. The use of one large file enables a great increase in computational speed by allowing
all the data to be loaded into resident memory under one variable, so the calculations of
summing and interpolation in equations 40 and 41 can be done efficiently. If enough resident
memory is available to hold the filtered projection data as well as the additional variables
to perform the calculations, an individual z,y,z pixel can be computed in 0.15 seconds on a
Sun Microsystems SPARC 2 workstation. This number greatly suffers if insufficient resident

memory is available.
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After all the pixels are computed a method of displaying the image is needed. Two
methods were used in this research. Two-dimensional slices were made from the three-
dimensional data set using Matlab to show the locations of the major scatterers and compare
them to the actual target. Also, IDL, developed by Research Systems, Inc., has a useful
volume visualization tool called SLICER. This application was used to produce iso-surfaces
or three-dimensional contour plots of a volume at a given density level. For example, in
medical imaging applications, a series of two-dimensional images can be created by computed
tomography or magnetic resonance imaging. When stacked, these images create a grid of
density measurements that can be contoured to display the surface of anatomical structures (10).

IDL also was used to visualize slices of the the volume data set.

3.5 Conclusion

In this chapter the -:1; scale model of the C-29 and the two series of radar measurements
used to test the algorithm of Chapter 2 were presented. Then, the methods used to generate
results were explained as was the obstacles encountered during the implementation of those

methods.
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Figure 11. Photographs of C-29 % Scale Model.
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Figure 12. % Scale Dimensions of a C-29.
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VYV Polarization
Azimuth Angle -5 <OL5° AO = 0.04°
Elevation Angle F<Pp<LT A¢ = 0.04°

Frequencies 26 x 10° hertz < f < 36 x 10% hertz Af = 10 x 108 hertz

Figure 13. Geometry for Nose Data Series.
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Elevation Angle F<Pp<LT A¢ = 0.04°
Frequencies 26 x 10%hertz < f < 36 x 10% hertz A f = 10 x 108 hertz

Figure 14. Geometry for Wing Data Series.
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Figure 15. Illustration of effect of up sampling on image quality. (a) no up sampling; (b) 6
times up sampling; (c) 20 times up sampling.
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IV. Results
4.] Introduction

This chapter presents the three-dimensional images of the C-29 aircraft. These images
are in the form of iso-surface images as well as two-dimensional slices. The images are

discussed and compared to the physical properties of the target.

4.2 Nose Data

Three-dimensional pixel values were computed using the nose data set described in
Figure 13 and the algorithm developed in Section 2.4. The volume consists of 720,000 pixels

and has the following dimensions,

—3.0 meters < z < 3.0 meters stepsize Az = 0.05 meters

—3.0 meters < y < 3.0 meters  stepsize Ay = 0.05 meters

—0.5 meters < z < 2.0 meters  stepsize Az = 0.05 meters.
Figure 16 shows the top view of the iso-surface for this volume. The silhouette of the actual
target is overlayed on the image. The returns of the engines and landing lights on the leading
edge of the wings are readily visible. Figure 17 is the same iso-surface observed from the
front. The vertical separation of the engines and landing lights is evident and shows the
true three-dimensionality of these results. The pedestal exhibits large returns due to the fact
that VV polarization was used and the pedestal was not subtracted out of the measurements.

Sidelobes from the engines are also seen from this view.

By looking at two-dimensional slices taken at the major scatterers it is easy to see that
they line up with the physical characteristics of the target. Figure 18 shows a contour plot
in the zz plane at the leading edge of the engines. An image of this same slice is shown in
Figure 19 from a different aspect. Figﬁre 20 is a contour plot in the zz plane showing the
reflections from the APU intake and Figure 21 is a slice taken of the same area. Figures 22

and 23 shows reflections from the landing lights.
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Figure 16. Top view of iso-surface from nose data.
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Figure 17. Front view of iso-surface from nose data.

Two-dimensional slices were also made in the zy plane to verify the precision of the
return’s locations in the z dimension when compared to the target. Figure 24 is a slice through
the engines in the zy plane and clearly shows the engine’s reflections. Figure 25 is a slice
through the location of the APU intake in the zy plane and Figure 26 shows a slice through
the landing lights.

Figures 27 through 33 are slices taken in the zz plane of the whole volume computed
from the nose data. These slices are taken every 0.1513 meters going from front to back.
Figures 34 through 36 are slices taken in the zy plane of the same volume. These slices are
taken every 0.1530 meters from top to bottom. Figures 37 through 42 are expanded views of
some of the slices taken at critical areas. They are also presented with thé outline of the plane

overlayed on them.
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Figure 18. Contour plot in zz plane of engine returns.
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Figure 19. Slice in z2 plane of engine returns.
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Figure 20. Contour plot in zz plane of intake returns.
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Figure 21. Slice in z2 plane of intake returns.
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Figure 22. Contour plot in 22 plane of landing lights returns.
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Figure 23. Slice in z2 plane of landing lights returns.
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Figure 24. Slice in Ty plane of engine returns.
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Figure 25. Slice in zy plane of APU intake returns.
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Figure 26. Slice in zy plane of landing lights returns.
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Figure 27. Nose Data: z2 plane slices at (a) y = 3.0000 meters (b) y = 2.8487 meters (c)
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Figure 28. Nose Data: z2z plane slices at (a) ¥ = 2.0924 meters (b) y = 1.9412 meters (c)
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Figure 29. Nose Data: z2 plane slices at (a) y = 1.1849 meters (b) y = 1.0336 meters (c)
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Figure 30. Nose Data: zz plane slices at (a) y = 0.2773 meters (b) y = 0.1261 meters
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Nose Data: z2z plane slices at (a) y = —0.6303 meters (b) y = —0.7815 meters
(¢) y = —0.9328 meters (d) y = —1.0840 meters (e) y = —1.2353 meters (f)

y = —1.3866 meters.
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Figure 32. Nose Data: zz plane slices at (a) y = —1.5378 meters (b) y = —1.6891 meters
(c) y = —1.8403 meters (d) y = —1.9916 meters (e) y = —2.1429 meters (f)
y = —2.2941 meters.
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Figure 33. Nose Data: zz plane slices at (a) y = —2.4454 meters (b) y = —2.5966 meters
() y = —2.7479 meters (d) y = —2.8992 meters.
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Figure 34. Nose Data: zy plane slices at (a) z = 2.0000 meters (b) z = 1.8469 meters (c)
z = 1.6939 meters (d) z = 1.5408 meters (¢) z = 1.3878 meters (f) z = 1.2347

meters.
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Figure 35. Nose Data: zy plane slices at (a) 2 = 1.0816 meters (b) z = 0.9286 meters (c)
z = 0.7755 meters (d) z = 0.6224 meters (e) z = 0.4694 meters (f) z = 0.3163
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Figure 36. Nose Data: zy plane slices at (a) z = 0.1633 meters (b) z = 0.0102 meters (c)
z = —0.1429 meters (d) 2 = —0.2959 meters (e) z = —0.4490 meters.
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Figure 37. Nose Data: Slice in z2 plane of landing lights scattering.
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Figure 38. Nose Data: Slice in z2 plane of APU intake scattering.
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Figure 39. Nose Data: Slice in z2 plane of engines scattering.

55




xy slice at z=0.4694

i
—

Down—Range [y axis] (meters)
- o

-3 -2 -1 0 1 2 3
Cross—Range [x axis] (meters)

Figure 40. Nose Data: Slice in zy plane of landing lights scattering.
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Figure 41. Nose Data:Slice in zy plane of engines scattering.
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Figure 42. Nose Data: Slice in zy plane of APU intake scattering.
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4.3 Wing Data

The wing data described in Figure 14 provides the most dramatic results. The HH
polarization makes the pedestal less of a reflector. The 19° to 29° azimuth angles are normal
to the leading edge of the right wing and leading edge of the right horizontal stabilizer. This
angular range allows the wing and the horizontal stabilizer to be the major scatterers. Also,

this makes it easy to see the vertical separation between the wing and the tail.

A volume consisting of 864,000 pixels was computed over the following dimensions,

—3.0 meters < z < 3.0 meters  stepsize Az = 0.05 meters
—3.0 meters < y < 3.0 meters stepsize Ay = 0.05 meters

—0.5 meters < z < 2.5 meters stepsize Az = 0.05 meters.

Figure 43 is a top view of the iso-surface for this volume and shows reflections from
the wing and horizontal stabilizer. Figure 44 shows the vertical separation of the wing and the
horizontal stabilizer coincides with their physical location on the target. The reflections at the

bottom of Figure 44 are caused by the pedestal.

Figures 45 through 51 are slices taken in the z2 plane of the entire volume computed
from the wing data. These slices are taken every 0.1513 meters going from front to back.
Figures 52 through 55 are slices taken in the zy plane of the same volume. These slices are
taken every 0.1525 meters from top to bottom. Figures 56 and 57 are expanded views of slices

in the zy plane of the horizontal stabilizer and wing respectivly.

4.4 Conclusion

Images computed by utilizing the three-dimensional algorithm of Chapter 2 were pre-
sented in this chapter. The accuracy of this algorithm was verified by comparing iso-surface
images as well as two-dimensional slices to the physical properties of the target. The images
demonstrated that scattering primarily occurs at physical discontinuities on the target. In
the case of the nose data, VV polarization was used causing surfaces with vertical edges,

such as the pedistal, to be dominant scatterers. Since HH polarization was used for the wing
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Figure 44. Front view of iso-surface from wing data.

data, surfaces with horizontal edges are the dominant scatterers. This combined with azimuth
angles normal to the wing and horizontal stabilizer’s leading edge cause these “edges” to be

the dominant scatterers,
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Figure 45. Wing Data: zz plane slices at (a) y = 3.0000 meters (b) y = 2.8487 meters (c)
y = 2.6975 meters (d) y = 2.5462 meters (e) y = 2.3950 meters (f) y = 2.2437

meters.
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? Figure 46. Wing Data: zz plane slices at (a) y = 2.0924 meters (b) y = 1.9412 meters (c)
y = 1.7899 meters (d) y = 1.6387 meters (e) y = 1.4874 meters (f) y = 1.3361
‘ meters.
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Figure 47. Wing Data: zz plane slices at (a) y = 1.1849 meters (b) ¥ = 1.0336 meters (c)
y = 0.8824 meters (d) y = 0.7311 meters (¢) y = 0.5798 meters (f) y = 0.4286

meters.
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Wing Data: zz plane slices at (a) y = 0.2773 meters (b) y = 0.1261 meters
(c) y = —0.0252 meters (d) y = —0.1765 meters (e) y = —0.3277 meters (f)

y = —0.4790 meters.
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Figure 49. Wing Data: zz plane slices at (a) y = —0.6303 meters (b) y = —0.7815 meters
(c) y = —0.9328 meters (d) y = —1.0840 meters (¢) y = —1.2353 meters (f)
y = —1.3866 meters.
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(a) y = —1.5378 meters (b) y = —1.6891 meters
(¢) y = —1.8403 meters (d) y = —1.9916 meters (e) y = —2.1429 meters (f)




Vertical [z axis] (meters)
Vertical {z axis] {metors)

-1 -1

-1 0 1 2 3 -3 -2 -1 0 1
Cross-Range {x axis] (meters) Cross-Range {x axis] (meters)

(a) ()

Vertical [z axis} (meters)
Vertical [z axis] (meters)

A n n L L ' s L

N

«

&
ey
@

-3 -2 -1 0 1 -2 -1 0 1
Cross—-Rangse [x axis] (metsrs) Cross-Range {x axis] (meters)

©) (d

Figure 51. Wing Data: zz plane slices at (a) y = —2.4454 meters (b) y = —2.5966 meters
(©) y = —2.7479 meters (d) y = —2.8992 meters.
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Figure 52. Wing Data: zy plane slices at (a) z = 2.5000 meters (b) z = 2.3475 meters (c)
2 = 2.1949 meters (d) z = 2.0424 meters () z = 1.8898 meters (f) z = 1.7373

meters.
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Figure 53. Wing Data: zy plane slices at (a) z = 1.5847 meters (b) z = 1.4322 meters (c)
= 1.2797 meters (d) z = 1.1271 meters (e) z = 0.9746 meters (f) z = 0.8220

meters.
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Figure 54. Wing Data: zy plane slices at (a) 2 = 0.6695 meters (b) z = 0.5169 meters

0.0593 meters (f)
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Figure 55. Wing Data: zy plane slices at (a) z = —0.2458 meters (b) z = —0.3983 meters.
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Figure 56. Wing Data:Slice in zy plane of horizontal stabilizer scattering.
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Figure 57. Wing Data: Slice in zy plane of wing scattering.

73




V. Conclusions
5.1 Summary of Work

In Chapter 2, basic radar imaging theory was presented from its basic principles through
two-dimensional Filtered Back-Projection. With this basis in hand, three-dimensional Filtered
Back-Projection was then developed and translated into a discrete algorithm. Chapter 3
presented the C-29 one-third scale model used to generate data for this research as well
as two series of three-dimensional radar measurements taken by Wright Laboratory. The
methodology used to convert these radar measurements into actual radar images was recounted
while some of the obstacles confronted in this process were touched on. The results were
presented in Chapter 4. Iso-surface images were presented from different view angles and

two-dimensional slices were included of the major scattering features.

5.2 Discussion of Results

This research demonstrates the ability to produce accurate three-dimensional images
given three-dimensional radar data. The major problem confronted in this research was the
lack of memory available in terms of both hard drive space and RAM. This problem limited the
amount of up sampling allowed when computing the projections and ultimately led to inferior
resolution as well as spurious responses in the final image. Theoretically, sufficient resolution
should have been available without upsampling the original data as shown in Equation 43.
However, due to accumulated error caused by summing the numerous projections, large
errors resulted in the final image. In order to reduce this effect, up sampling as well as the
interpolation step described in Equation 40 was necessary (1). It was determined through trail
and error that at the least, up sampling by a factor of 6 for the nose data and 7 for the wing data
produced a minimumly acceptable image. Using a factor below those given above resulted
in poor image quality as shown in Figure 15. Ideally, up sampling by a factor of 20, as was
used in Anderson’s two-dimensional research (1), would produce excellent image quality but

would result in a dataset far to large to work with for three-dimensional imaging. However,
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it is still obvious from the images shown in Chapter 4 that this three-dimensional algorithm
produces accurate scatterer location in the 2 dimension. If sufficient memory were available
to up sample at a higher rate much better resolution can be achieved in the resuiting image.
The most dramatic results were produced using the wing data. It is clear by viewing Figure 44

that a true three dimensional representation of the target was computed.

5.3 Recommendations for Future Research

Primarily, any future work in the area of three-dimensional imaging should be focused
on reducing the memory requirements of computing an image. Inherently the “raw” three-
dimensional radar data will require extremely large storage space. The aforementioned need
to up sample the projection data causes a multitudinous increase in storage space requirements
over this original data. It would be of great benefit to look into an alternative method
of interpolation other than up sampling. One possibility is illustrated in Oppenheim and
Shafer (9). The process of up sampling is equivalent to applying an ideal low-pass filter in
the frequency domain or convolving with a sinc function in the time domain. The use of a
convolution to determine the interpolated values eliminates the need to up sample. But care
should be taken not hinder the computational speed of computing a pixel in the process. The
fact that such a high number of pixels need to be computed to obtain a useful image, for example
864,000 pixels for the nose data in this research, even a small decrease in computational speed

could cause a large increase in the time required to compute a volume of pixels.

Additional research can possibly be done in the area of artificially extending the band-
width of the radar data through the use of parametric methods. This process would effectively
remove any noise in the computed projections and possibly produce a clearer image in the

end.
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Appendix A. Computer Code

This appendix contains the computer code used to compute the images in this research.
Section A.1 contains the code that computes the filtered projections and stores them according
to elevation angle in Matlab .mat files. Section A.3 converts the .mat files to an 3-D unformatted
fortran array. Section A.4 contains the code that actually computes the 3-D volume from the

filtered projections.

A.l projection.m

%
% File: projection.m

$ Author: Jack D. Pullis

b Purpose: Compute filtered projections on raw radar data and store
] according to elevation angle.
%
%
$
f=

[26002300:20000:36002300]*1073;

ph=(4.92:.08:6.04];

c=3e8; % speed of light

m=7; % oversample factor
df=abs(f(2)-£(1)); $ calculate delta-f
dth=abs(th(2)-th(1)); % calculate delta-theta
dph=abs(ph(2)-ph(1)); % calculate delta-phi

for el=1:length(ph);

E=num2str((30-ph(el))*100);
file=[’C29_3D_hhN.0',E};
fid=fopen(file);

buf=fread(fid, [2008,251], 'float32’);
fclose(’all’)
G=buf(7:2:2008,:)+j*buf(8:2:2008,:);
[M,V]=size(G);

M=501;

Ru=0.5*c/df; % calculate the unambiguous range
dr=Ru/(m*M); % calculate the range resolution
r=(0:m*M-1)*dr; % form the downrange vector

filt=cos(ph(el)*(180/pi))*((£(:)."2)*ones(1,V)); & calculate imaging filter

corr=exp(j*4*pi*f(l)*r’/c)*ones(l,V); % shift to baseband for IFFT
re=corr.*ifft(G(1:2:1001,:).*filt, m*M); % compute filtered projections
for ci=1:V;

rc(:,ciy=fftshift(re(:,ciy));

end

E2=num2str(ph(el));
file2=('/home/marconil/c29/C_29_3D_hhNel’, E2]

eval([’save ' file2 ' rc’']) % store projections in elevation file
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end

A2 convertf

¢

c file: convert.f

c author: Jack D. Pullis

c purpose: Convert .mat files containing filtered projections

c to a unformated fortran 3-D array then save it

c

c

c
g

character*50 fill, filel
complex*8 rc(3006,251,37)
complex*16 r(754506)
real*4 ph(34)
integer*4 fp,matOpen,p
integer mn, stat
integer*4 matGetMatrix
integer mxGetM, mxGetn, matClose

fill='/home/marconil/c29/Binproj/datahn2.all’
open{unit=55,file=fill, form='unformated’, status='unknown’)

ph(1)=3.00
do 20 I=2,37
ph(I)=ph(I-1)+.08
20 continue /

do 10 I=1,37

open(unit=52, status='scratch’)
write(52,11) ‘/home/marconil/c29/C_29_3D_hhNel’, ph(I)

rewind(unit=52)

read(52,12) filel

11 format(A32,F4.2)
12 format(A36)

close(52)

write(6,*) filel
fp = matOpen(filel, 'r’)
p = matGetMatrix(fp, ‘rc’)
mn = mxGetM(p) * mxGetN(p)
call mxCopyPtrToComplex16(mxGetPr(p), mxGetPi(p), r, mn)
stat = matClose(fp)
call mxFreeMatrix(p)
write(6,*) mn
do 30 K=1,251
do 40 J=1,3006

indx=indx+1
rc(J,K,I)=r(indx)
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40 continue
30 continue

indx=0
10 continue

write(55) rc
close(55)

end

A3 image3d.f

c
c file: image3d.f

c author: Jack D. Pullis

c purpose: Compute 3-D Filtered Back-Projection volume from

c pre-stored projection file named data.all. The resulting
c data is stored in a Matlab .mat file under the name

c rdata.mat

c

c

c
P

dimension ph(101),th(251),£(501),st(251)
dimension x(90),y(90),2(5),v(251),ct(521),sph(101),cph(101)
real *4 ph
integer mn, stat,inc,incl,rl,inc2,Q,indx,13
integer fp,matOpen,p,mxCreateFull
complex *8 rc(3507,251,37),cum
complex *16 data(40500)
integer matClose
character*50 filel,file2

complex*8 rcl(3006,251,19),rc2(3006,251,18)
character*50 fill,fil2,fil3

fill=’ /home/fishl/jsacchin/data.all’

open(unit=55,file=fill, form='unformated’, status='unknown’)
read(55) rcl -
close(55)

c=3e8
open{unit=1,file='outtest.dat’, status='old’)
read(1l,*) ph,th,f,x,y,2

ml=6
nth=251
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nph=101
M=501
nx=90
ny=90
nz=1
df=abs(f(2)-£(1))
dth=abs(th(2)-th(1))
dph=abs(ph(2)-ph(1))
Ru=0,S*c/df
dr=Ru/(ml*M)

do 20 I=1,nth
radi=th(I)*(3.14/180)

st(I)=sin(radi)
ct(I)=cos(radi)

20 continue

do 30 I=1,nph
sph(I)=sin(ph(I)*(3.14/180))
cph(Iy=cos(ph{I)*(3.14/180))

« 30 continue

do 40 zi=1,nz
do 50 xi=1,nx
do 60 yi=1,ny
cum=(0.0 , 0.0)
ine=0
do 70 1=1,73,2
inc=inc+l
zscal=sph(l)

do 75 12=1,nth
xscal=st(12)*cph(l)
1 yscal=ct(12)*cph(l)

|
} v(12)=x(xi)*xscal+y(yi)*yscél+z(zi)*zscal
75 continue

do 76 13=1,nth

rp=v(13)/dr+1+(M*ml)/2
rl=int(rp)

cum=cum+(rl+l-rp)*rc(rl,13,inc)+(rp-rl)*ro(rl+l,13,inc)

76 continue

70 continue
data(yit((xi-1)*ny)+(zi-1)*ny*nx)=cum

60 continue

write(6,*) xi,zi

50 continue

40 continue
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fp = matOpen('rdata.mat’, ‘w’)

p = mxCreateFull(nx*ny, nz, 1)

call mxCopyComplex16ToPtr(data, mxGetPr(p), mxGetPi(p), nz*nx*ny)
call mxSetName(p, ‘R’)

stat = matPutMatrix(fp, p)

stat = matClose(fp)

call mxFreeMatrix(p)

end
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